Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 586(7827): 145-150, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968273

RESUMO

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Estreptogramina Grupo A/síntese química , Estreptogramina Grupo A/farmacologia , Acetilação/efeitos dos fármacos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Antibacterianos/classificação , Carga Bacteriana/efeitos dos fármacos , Sítios de Ligação , Microscopia Crioeletrônica , Feminino , Técnicas In Vitro , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Estreptogramina Grupo A/química , Estreptogramina Grupo A/classificação , Virginiamicina/análogos & derivados , Virginiamicina/química , Virginiamicina/metabolismo
2.
Soc Work Public Health ; 35(4): 197-212, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32431243

RESUMO

Home visiting (HV) programs have the potential to improve maternal and child health. As federal and state initiatives expand the reach of these programs, understanding what factors enhance uptake and retention of the services becomes increasingly important. This qualitative study used a Reasoned Action Model (RAM) and a cultural lens to explore factors influencing the engagement of women with low-income in HV programs. We conducted 21 semi-structured interviews in both English and Spanish in a prenatal clinic in an urban public health department. The constructs most salient for participants were emotions and affect, behavioral beliefs, and self-efficacy. In the context of an urban public health prenatal clinic, HV marketing and outreach should highlight convenience and social support, as well as clearly communicate program content and intent. In practice, HV programs must be flexible to work around work and home schedules; marketing and outreach should emphasize that flexibility.


Assuntos
Visita Domiciliar , Intenção , Serviços de Saúde Materno-Infantil , Aceitação pelo Paciente de Cuidados de Saúde , Criança , Feminino , Humanos , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Gravidez , Pesquisa Qualitativa
3.
J Antimicrob Chemother ; 75(8): 2149-2155, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32285102

RESUMO

BACKGROUND: Ibezapolstat (ACX-362E) is the first DNA polymerase IIIC inhibitor undergoing clinical development for the oral treatment of Clostridioides difficile infection (CDI). METHODS: In this study, the in vitro activity of ibezapolstat was evaluated against a panel of 104 isolates of C. difficile, including those with characterized ribotypes (e.g. 027 and 078) and those producing toxin A or B and was shown to have similar activity to those of comparators against these strains. RESULTS: The overall MIC50/90 (mg/L) for ibezapolstat against evaluated C. difficile was 2/4, compared with 0.5/4 for metronidazole, 1/4 for vancomycin and 0.5/2 for fidaxomicin. In addition, the bactericidal activity of ibezapolstat was evaluated against actively growing C. difficile by determining the MBC against three C. difficile isolates. Time-kill kinetic assays were additionally performed against the three C. difficile isolates, with metronidazole and vancomycin as comparators. CONCLUSIONS: The killing of C. difficile by ibezapolstat was observed to occur at concentrations similar to its MIC, as demonstrated by MBC:MIC ratios and reflected in time-kill kinetic assays. This activity highlights the therapeutic potential of ibezapolstat for the treatment of CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Fidaxomicina , Humanos , Testes de Sensibilidade Microbiana
4.
Diagn Microbiol Infect Dis ; 92(3): 250-252, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30042035

RESUMO

Antibiotic drug development remains a major challenge with few candidates in clinical development. Ramizol, a first-in-class styrylbenzene antibiotic, is under development for the treatment of Clostridium difficile associated disease. Here, we investigate the in vitro antibacterial activity of Ramizol in comparison to fidaxomicin, vancomycin and metronidazole against 100 clinical isolates of C. difficile by the broth microdilution method. We show there is no apparent impact of ribotype, toxin-production, or resistance to fidaxomicin, vancomycin or metronidazole on the activity of Ramizol. Moreover, we show Ramizol has a narrower MIC range translating to potentially better control over the therapeutic dose. Together, these results support the further development of Ramizol for the treatment of C. difficile associated disease.


Assuntos
Antibacterianos/farmacologia , Benzoatos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Fidaxomicina/farmacologia , Metronidazol/farmacologia , Estilbenos/farmacologia , Vancomicina/farmacologia , Clostridioides difficile/isolamento & purificação , Farmacorresistência Bacteriana , Enterocolite Pseudomembranosa/tratamento farmacológico , Enterocolite Pseudomembranosa/microbiologia , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana
5.
Artigo em Inglês | MEDLINE | ID: mdl-29439961

RESUMO

Omadacycline (OMC), a broad-spectrum aminomethylcycline, has shown clinical efficacy in anaerobic acute bacterial skin and skin structure infections (ABSSSI) and in animal models of intra-abdominal anaerobic infections. Here, the in vitro activity of OMC against clinically relevant anaerobes was similar to that of tigecycline, with MIC90 values of 1 to 8 µg/ml against Bacteroides spp., 0.5 µg/ml against Clostridium difficile, Prevotella spp., and Porphyromonas asaccharolytica, 1 µg/ml against Peptostreptococcus spp., and 16 µg/ml against Clostridium perfringens.


Assuntos
Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Tetraciclinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptostreptococcus/efeitos dos fármacos , Porphyromonas/efeitos dos fármacos , Prevotella/efeitos dos fármacos , Tigeciclina/farmacologia
6.
PLoS One ; 8(5): e61551, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690925

RESUMO

Thiazolidinedione (TZD) insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44) and BRP44 Like (BRP44L), which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT) cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13)C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT) and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Secreção de Insulina , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Dados de Sequência Molecular , Transportadores de Ácidos Monocarboxílicos , Homologia de Sequência de Aminoácidos
7.
J Virol ; 86(1): 293-301, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013036

RESUMO

Poxviruses have an elaborate system for infecting cells comprising several proteins for attachment and a larger number dedicated to membrane fusion and entry. Thus far, 11 proteins have been identified as components of the vaccinia virus (VACV) entry-fusion complex (EFC), and 10 of these proteins have been shown to be required for entry. J5, the remaining functionally uncharacterized component of the complex, is conserved in all poxviruses, has a predicted C-terminal transmembrane domain, and is an N-terminally truncated paralog of two other EFC proteins. To determine the role of J5, we constructed a mutant that inducibly regulates J5 transcription. Although the virus yield was reduced only about 80% without inducer, the inability to isolate a J5 deletion mutant suggested an essential function. To enhance stringency, we employed RNA silencing alone and together with transcriptional repression of the inducible mutant. The yield of infectious virus was reduced 4- to 5-fold by repression, 2-fold by silencing, and 60-fold by the combination of the two. Virus particles made under the latter conditions appeared to contain a full complement of proteins excluding J5 but had very low infectivity. Further studies indicated that after binding to cells, J5-deficient virions had a defect in core entry and an inability to induce syncytium formation. In addition, we confirmed that J5 is associated with the EFC by affinity purification. These data indicate that J5 is a functional component of the EFC and highlights the advantage of combining transcriptional repression and RNA silencing for stringent reduction of gene expression.


Assuntos
Regulação para Baixo , Interferência de RNA , Transcrição Gênica , Vírus Vaccinia/genética , Vaccinia/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Regulação Viral da Expressão Gênica , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Vírus Vaccinia/química , Vírus Vaccinia/metabolismo , Proteínas Virais/química
8.
Virology ; 412(2): 278-83, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21295816

RESUMO

The vaccinia virus entry-fusion complex (EFC) consists of 10 to 12 proteins that are embedded in the viral membrane and individually required for fusion with the cell and entry of the core into the cytoplasm. The architecture of the EFC is unknown except for information regarding two pair-wise interactions: A28 with H2 and A16 with G9. Here we used a technique to destabilize the EFC by repressing the expression of individual components and identified a third pair-wise interaction: G3 with L5. These two proteins remained associated under several different EFC destabilization conditions and in each case were immunopurified together as demonstrated by Western blotting. Further evidence for the specific interaction of G3 and L5 was obtained by mass spectrometry. This interaction also occurred when G3 and L5 were expressed in uninfected cells, indicating that no other viral proteins were required. Thus, the present study extends our knowledge of the protein interactions important for EFC assembly and stability.


Assuntos
Mapeamento de Interação de Proteínas , Vírus Vaccinia/fisiologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Western Blotting , Linhagem Celular , Humanos , Espectrometria de Massas , Ligação Proteica , Proteínas Virais de Fusão/isolamento & purificação
9.
Biochim Biophys Acta ; 1800(7): 629-38, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20332014

RESUMO

BACKGROUND: The membrane-bound mucins, MUC17 (human) and Muc3 (mouse), are highly expressed on the apical surface of intestinal epithelia and have cytoprotective properties. Their extracellular regions contain two EGF-like Cys-rich domains (CRD1 and CRD2) connected by an intervening linker segment with SEA module (L), and may function to stimulate intestinal cell restitution. The purpose of this study was to determine the effect of size, recombinant host source, and external tags on mucin CRD1-L-CRD2 protein activity. METHODS: Four recombinant Muc3-CRD proteins and three MUC17-CRD proteins were generated using Escherichiacoli or baculovirus-insect cell systems and tested in colonic cell cultures for activity related to cell migration and apoptosis. RESULTS: N-terminal glutathione-S-transferase (GST) or C-terminal His(8) tags had no effect on either the cell migration or anti-apoptosis activity of Muc3-CRD1-L-CRD2. His-tagged Muc3-CRD1-L-CRD2 proteins with truncated linker regions, or the linker region alone, did not demonstrate biologic activity. The human recombinant MUC17-CRD1-L-CRD2-His(8) was shown to have anti-apoptotic and pro-migratory activity, but did not stimulate cell proliferation. This protein showed similar in vitro biologic activity, whether produced in E. coli or a baculovirus-insect cell system. CONCLUSIONS: Recombinant mucin proteins containing a bivalent display of Cys-rich domains accelerate colon cell migration and inhibit apoptosis, require a full-length intervening Linker-SEA segment for optimal biologic activity, and are functional when synthesized in either E. coli and insect cell systems. GENERAL SIGNIFICANCE: These results indicate that an Escherichiacoli-derived full-length His(8)-tagged human MUC17 CRD1-L-CRD2 recombinant protein is a biologically active candidate for further development as a therapeutic agent.


Assuntos
Mucinas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Baculoviridae/genética , Linhagem Celular Tumoral , Movimento Celular , Mapeamento Cromossômico , Cromossomos Humanos Par 7 , Neoplasias do Colo/genética , Escherichia coli/genética , Glutationa Transferase/química , Glutationa Transferase/genética , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Dados de Sequência Molecular , Mucinas/química , Mucinas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
FEBS Lett ; 579(27): 6049-54, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16229838

RESUMO

Eukaryotic valyl-tRNA synthetase (ValRS) and the heavy form of elongation factor 1 (EF-1H) are isolated as a stable high molecular mass complex that catalyzes consecutive steps in protein biosynthesis--aminoacylation of tRNA and its transfer to elongation factor. Herein is the first three-dimensional structure of the particle as calculated from electron microscopic images of negatively stained samples of the human ValRS/EF-1H complex. The ca. 12 x 8 nm particle has two distinct domains and each appears to have twofold symmetry. Bound antibodies place two delta subunits near the particle's center. These data support a dimeric head-to-head arrangement of particle components.


Assuntos
Fatores de Alongamento de Peptídeos/química , Valina-tRNA Ligase/química , Humanos , Conformação Proteica , Subunidades Proteicas/química
11.
J Biol Chem ; 280(46): 38870-8, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16169847

RESUMO

It has become evident that the process of protein synthesis is performed by many cellular polypeptides acting in concert within the structural confines of protein complexes. In multicellular eukaryotes, one of these assemblies is a multienzyme complex composed of eight proteins that have aminoacyl-tRNA synthetase activities as well as three non-synthetase proteins (p43, p38, and p18) with diverse functions. This study uses electron microscopy and three-dimensional reconstruction to explore the arrangement of proteins and tRNA substrates within this "core" multisynthetase complex. Binding of unfractionated tRNA establishes that these molecules are widely distributed on the exterior of the structure. Binding of gold-labeled tRNA(Leu) places leucyl-tRNA synthetase and the bifunctional glutamyl-/prolyl-tRNA synthetase at the base of this asymmetric "V"-shaped particle. A stable cell line has been produced that incorporates hexahistidine-labeled p43 into the multisynthetase complex. Using a gold-labeled nickel-nitrilotriacetic acid probe, the polypeptides of the p43 dimer have been located along one face of the particle. The results of this and previous studies are combined into an initial three-dimensional working model of the multisynthetase complex. This is the first conceptualization of how the protein constituents and tRNA substrates are arrayed within the structural confines of this multiprotein assembly.


Assuntos
Aminoacil-tRNA Sintetases/química , Microscopia Eletrônica/métodos , Aminoacilação , Sítios de Ligação , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Eletroforese em Gel de Poliacrilamida , Histidina/química , Humanos , Células K562 , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multiproteicos/química , Oligopeptídeos/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , RNA/química , RNA de Transferência/química
12.
Bioconjug Chem ; 15(2): 333-43, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15025529

RESUMO

Screening of our compound collection identified PNU-92560, a 2-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxamide, as a novel antibacterial agent. Extensive analogue development identified that the 2-position of the thiadiazole could be functionalized with a linker that would allow the compound to be attached to a solid support. The extreme insolubility of the analogues prevented the mechanism of action for these compounds to be determined utilizing traditional methodology. The solid-supported compounds were utilized as affinity columns to identify elongation factor Tu (EF-Tu) as a putative target for this class of compounds. The activity of the compounds in a metabolic labeling experiments and in translation assay supports the identity of the target for these compounds to be EF-Tu.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Fator Tu de Elongação de Peptídeos/isolamento & purificação , Fator Tu de Elongação de Peptídeos/metabolismo , Pirimidinas/química , Tiazóis/química , Antibacterianos/farmacologia , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão/métodos , Sistemas de Liberação de Medicamentos , Ligação Proteica/fisiologia , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Tiazóis/metabolismo , Tiazóis/farmacologia
13.
Protein Sci ; 12(10): 2282-90, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14500886

RESUMO

In this study, the human multienzyme aminoacyl-tRNA synthetase "core" complex has been isolated from the nuclear and cytosolic compartments of human cells and purified to near homogeneity. It is clear from the polypeptide compositions, stoichiometries, and three-dimensional structures that the cytosolic and nuclear particles are very similar to each other and to the particle obtained from rabbit reticulocytes. The most significant difference observed via aminoacylation activity assays and densitometric analysis of electrophoretic band patterns is a lower amount of glutaminyl-tRNA synthetase in the human particles. However, this is not enough to cause major changes in the three-dimensional structures calculated from samples negatively stained with either uranyl acetate or methylamine vanadate. Indeed, the latter samples produce volumes that are highly similar to an initial structure previously calculated from a frozen hydrated sample of the rabbit multisynthetase complex. New structures in this study reveal that the three major structural domains have discrete subsections. This information is an important step toward determination of specific protein interactions and arrangements within the multisynthetase core complex and understanding of the particle's cellular function(s). Finally, gel filtration and immunoblot analysis demonstrate that a major biological role for the cytokine precursor p43 is as an integral part of the multisynthetase complex.


Assuntos
Aminoacil-tRNA Sintetases/química , Núcleo Celular/química , Citocinas/química , Citoplasma/química , Proteínas de Neoplasias/química , Proteínas de Ligação a RNA/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/ultraestrutura , Animais , Fracionamento Celular , Cromatografia Líquida de Alta Pressão , Citocinas/isolamento & purificação , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Immunoblotting , Células K562/química , Células K562/enzimologia , Cinética , Microscopia Eletrônica , Modelos Moleculares , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Coelhos , Homologia Estrutural de Proteína
14.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 12): 2153-6, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12454484

RESUMO

In bacteria the biosynthesis of all nascent polypeptides begins with N-formylmethionine. The post-translational removal of the N-formyl group is carried out by peptide deformylase (PDF). Processing of the N-formyl group from critical bacterial proteins is required for cell survival. This formylation/deformylation cycle is unique to eubacteria and is not utilized in eucaryotic cytosolic protein biosynthesis. Thus, inhibition of PDF would halt bacterial growth, spare host cell-function, and would be a novel mechanism for a new class of antibiotic. Diffraction-quality Se-met crystals of S. aureus PDF were prepared that belong to space group C222(1) with unit cell parameters of a = 94.1 b = 121.9 c = 47.6 A. Multiple anomalous dispersion data were collected at the Advanced Photon Source 17-ID beamline and used to solve the PDF structure to 1.9 A resolution. Crystals were also prepared with three PDF inhibitors: thiorphan, actinonin and PNU-172550. The thiorphan and actinonin co-crystals belong to space group C222(1) with similar unit-cell dimensions. Repeated attempts to generate a complex structure of PDF with PNU-172550 from the orthorhombic space group were unsuccessful. Crystallization screening identified an alternate C2 crystal form with unit-cell dimensions of a = 93.4 b = 42.5 c = 104.1 A, beta = 93 degrees.


Assuntos
Amidoidrolases , Aminopeptidases/química , Inibidores Enzimáticos/química , Staphylococcus aureus/enzimologia , Aminopeptidases/antagonistas & inibidores , Cristalização , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Conformação Proteica
15.
J Biol Chem ; 277(34): 31163-71, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12048187

RESUMO

The first crystal structure of Class II peptide deformylase has been determined. The enzyme from Staphylococcus aureus has been overexpressed and purified in Escherichia coli and the structure determined by x-ray crystallography to 1.9 A resolution. The purified iron-enriched form of S. aureus peptide deformylase enzyme retained high activity over many months. In contrast, the iron-enriched form of the E. coli enzyme is very labile. Comparison of the two structures details many differences; however, there is no structural explanation for the dramatic activity differences we observed. The protein structure of the S. aureus enzyme reveals a fold similar, but not identical to, the well characterized E. coli enzyme. The most striking deviation of the S. aureus from the E. coli structure is the unique conformation of the C-terminal amino acids. The distinctive C-terminal helix of the latter is replaced by a strand in S. aureus which wraps around the enzyme, terminating near the active site. Although there are no differences at the amino acid level near the active site metal ion, significant changes are noted in the peptide binding cleft which may play a role in the design of general peptide deformylase inhibitors.


Assuntos
Amidoidrolases , Aminopeptidases/química , Proteínas de Bactérias/química , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Aminopeptidases/antagonistas & inibidores , Cristalização , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...